8 research outputs found

    A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers

    Full text link
    [EN] This paper shows a Novel Low Processing Time System focused on criminal activities detection based on real-time video analysis applied to Command and Control Citizen Security Centers. This system was applied to the detection and classification of criminal events in a real-time video surveillance subsystem in the Command and Control Citizen Security Center of the Colombian National Police. It was developed using a novel application of Deep Learning, specifically a Faster Region-Based Convolutional Network (R-CNN) for the detection of criminal activities treated as "objects" to be detected in real-time video. In order to maximize the system efficiency and reduce the processing time of each video frame, the pretrained CNN (Convolutional Neural Network) model AlexNet was used and the fine training was carried out with a dataset built for this project, formed by objects commonly used in criminal activities such as short firearms and bladed weapons. In addition, the system was trained for street theft detection. The system can generate alarms when detecting street theft, short firearms and bladed weapons, improving situational awareness and facilitating strategic decision making in the Command and Control Citizen Security Center of the Colombian National Police.This work was co-funded by the European Commission as part of H2020 call SEC-12-FCT-2016-Subtopic3 under the project VICTORIA (No. 740754). This publication reflects the views only of the authors and the Commission cannot be held responsible for any use which may be made of the information contained therein.Suarez-Paez, J.; Salcedo-Gonzalez, M.; Climente, A.; Esteve Domingo, M.; Gomez, J.; Palau Salvador, CE.; Pérez Llopis, I. (2019). A Novel Low Processing Time System for Criminal Activities Detection Applied to Command and Control Citizen Security Centers. Information. 10(12):1-19. https://doi.org/10.3390/info10120365S1191012Wang, L., Rodriguez, R. M., & Wang, Y.-M. (2018). A dynamic multi-attribute group emergency decision making method considering expertsr hesitation. International Journal of Computational Intelligence Systems, 11(1), 163. doi:10.2991/ijcis.11.1.13Esteve, M., Perez-Llopis, I., & Palau, C. E. (2013). Friendly Force Tracking COTS solution. IEEE Aerospace and Electronic Systems Magazine, 28(1), 14-21. doi:10.1109/maes.2013.6470440Senst, T., Eiselein, V., Kuhn, A., & Sikora, T. (2017). Crowd Violence Detection Using Global Motion-Compensated Lagrangian Features and Scale-Sensitive Video-Level Representation. IEEE Transactions on Information Forensics and Security, 12(12), 2945-2956. doi:10.1109/tifs.2017.2725820Shi, Y., Tian, Y., Wang, Y., & Huang, T. (2017). Sequential Deep Trajectory Descriptor for Action Recognition With Three-Stream CNN. IEEE Transactions on Multimedia, 19(7), 1510-1520. doi:10.1109/tmm.2017.2666540Arunnehru, J., Chamundeeswari, G., & Bharathi, S. P. (2018). Human Action Recognition using 3D Convolutional Neural Networks with 3D Motion Cuboids in Surveillance Videos. Procedia Computer Science, 133, 471-477. doi:10.1016/j.procs.2018.07.059Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., & Feng, D. D. (2019). Deep Convolutional Neural Networks for Human Action Recognition Using Depth Maps and Postures. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(9), 1806-1819. doi:10.1109/tsmc.2018.2850149Zhang, B., Wang, L., Wang, Z., Qiao, Y., & Wang, H. (2018). Real-Time Action Recognition With Deeply Transferred Motion Vector CNNs. IEEE Transactions on Image Processing, 27(5), 2326-2339. doi:10.1109/tip.2018.2791180Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2016). Region-Based Convolutional Networks for Accurate Object Detection and Segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence, 38(1), 142-158. doi:10.1109/tpami.2015.2437384Suarez-Paez, J., Salcedo-Gonzalez, M., Esteve, M., Gómez, J. A., Palau, C., & Pérez-Llopis, I. (2018). Reduced computational cost prototype for street theft detection based on depth decrement in Convolutional Neural Network. Application to Command and Control Information Systems (C2IS) in the National Police of Colombia. International Journal of Computational Intelligence Systems, 12(1), 123. doi:10.2991/ijcis.2018.25905186Ren, S., He, K., Girshick, R., & Sun, J. (2017). Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 39(6), 1137-1149. doi:10.1109/tpami.2016.2577031Hao, S., Wang, P., & Hu, Y. (2019). Haze Image Recognition Based on Brightness Optimization Feedback and Color Correction. Information, 10(2), 81. doi:10.3390/info10020081Peng, M., Wang, C., Chen, T., & Liu, G. (2016). NIRFaceNet: A Convolutional Neural Network for Near-Infrared Face Identification. Information, 7(4), 61. doi:10.3390/info7040061NVIDIA CUDA® Deep Neural Network library (cuDNN)https://developer.nvidia.com/cuda-downloadsWu, X., Lu, X., & Leung, H. (2018). A Video Based Fire Smoke Detection Using Robust AdaBoost. Sensors, 18(11), 3780. doi:10.3390/s18113780Park, J. H., Lee, S., Yun, S., Kim, H., & Kim, W.-T. (2019). Dependable Fire Detection System with Multifunctional Artificial Intelligence Framework. Sensors, 19(9), 2025. doi:10.3390/s19092025García-Retuerta, D., Bartolomé, Á., Chamoso, P., & Corchado, J. M. (2019). Counter-Terrorism Video Analysis Using Hash-Based Algorithms. Algorithms, 12(5), 110. doi:10.3390/a12050110Zhao, B., Zhao, B., Tang, L., Han, Y., & Wang, W. (2018). Deep Spatial-Temporal Joint Feature Representation for Video Object Detection. Sensors, 18(3), 774. doi:10.3390/s18030774He, Z., & He, H. (2018). Unsupervised Multi-Object Detection for Video Surveillance Using Memory-Based Recurrent Attention Networks. Symmetry, 10(9), 375. doi:10.3390/sym10090375Muhammad, K., Hamza, R., Ahmad, J., Lloret, J., Wang, H., & Baik, S. W. (2018). Secure Surveillance Framework for IoT Systems Using Probabilistic Image Encryption. IEEE Transactions on Industrial Informatics, 14(8), 3679-3689. doi:10.1109/tii.2018.2791944Barthélemy, J., Verstaevel, N., Forehead, H., & Perez, P. (2019). Edge-Computing Video Analytics for Real-Time Traffic Monitoring in a Smart City. Sensors, 19(9), 2048. doi:10.3390/s19092048Aqib, M., Mehmood, R., Alzahrani, A., Katib, I., Albeshri, A., & Altowaijri, S. M. (2019). Smarter Traffic Prediction Using Big Data, In-Memory Computing, Deep Learning and GPUs. Sensors, 19(9), 2206. doi:10.3390/s19092206Xu, S., Zou, S., Han, Y., & Qu, Y. (2018). Study on the Availability of 4T-APS as a Video Monitor and Radiation Detector in Nuclear Accidents. Sustainability, 10(7), 2172. doi:10.3390/su10072172Plageras, A. P., Psannis, K. E., Stergiou, C., Wang, H., & Gupta, B. B. (2018). Efficient IoT-based sensor BIG Data collection–processing and analysis in smart buildings. Future Generation Computer Systems, 82, 349-357. doi:10.1016/j.future.2017.09.082Jha, S., Dey, A., Kumar, R., & Kumar-Solanki, V. (2019). A Novel Approach on Visual Question Answering by Parameter Prediction using Faster Region Based Convolutional Neural Network. International Journal of Interactive Multimedia and Artificial Intelligence, 5(5), 30. doi:10.9781/ijimai.2018.08.004Cho, S., Baek, N., Kim, M., Koo, J., Kim, J., & Park, K. (2018). Face Detection in Nighttime Images Using Visible-Light Camera Sensors with Two-Step Faster Region-Based Convolutional Neural Network. Sensors, 18(9), 2995. doi:10.3390/s18092995Zhang, J., Xing, W., Xing, M., & Sun, G. (2018). Terahertz Image Detection with the Improved Faster Region-Based Convolutional Neural Network. Sensors, 18(7), 2327. doi:10.3390/s18072327Bakheet, S., & Al-Hamadi, A. (2016). A Discriminative Framework for Action Recognition Using f-HOL Features. Information, 7(4), 68. doi:10.3390/info7040068(2018). Robust Eye Blink Detection Based on Eye Landmarks and Savitzky–Golay Filtering. Information, 9(4), 93. doi:10.3390/info9040093Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Communications of the ACM, 60(6), 84-90. doi:10.1145/3065386Jetson Embedded Development Kit|NVIDIAhttps://developer.nvidia.com/embedded-computingNVIDIA TensorRT|NVIDIA Developerhttps://developer.nvidia.com/tensorrtNVIDIA DeepStream SDK|NVIDIA Developerhttps://developer.nvidia.com/deepstream-sdkFraga-Lamas, P., Fernández-Caramés, T., Suárez-Albela, M., Castedo, L., & González-López, M. (2016). A Review on Internet of Things for Defense and Public Safety. Sensors, 16(10), 1644. doi:10.3390/s16101644Gomez, C., Shami, A., & Wang, X. (2018). Machine Learning Aided Scheme for Load Balancing in Dense IoT Networks. Sensors, 18(11), 3779. doi:10.3390/s18113779AMD Embedded RadeonTMhttps://www.amd.com/en/products/embedded-graphic

    C1Q Assay Results in Complement-Dependent Cytotoxicity Crossmatch Negative Renal Transplant Candidates with Donor-Specific Antibodies: High Specificity but Low Sensitivity When Predicting Flow Crossmatch

    Get PDF
    The aim of the present study was to describe the association of positive flow cross match (FXM) and C1q-SAB. Methods. In this observational, cross-sectional, and comparative study, patients included had negative AHG-CDC-XM and donor specific antibodies (DSA) and were tested with FXM. All pretransplant sera were tested with C1q-SAB assay. Results. A total of 50 donor/recipient evaluations were conducted; half of them had at least one C1q+ Ab (n=26, 52%). Ten patients (20.0%) had DSA C1q+ Ab. Twenty-five (50%) FXMs were positive. Factors associated with a positive FXM were the presence of C1q+ Ab (DSA C1q+ Ab: OR 27, 2.80–259.56, P=0.004, and no DSA C1q+ Ab: OR 5, 1.27–19.68, P=0.021) and the DSA LABScreen-SAB MFI (OR 1.26, 95% CI 1.06–1.49, P=0.007). The cutoff point of immunodominant LABScreen SAB DSA-MFI with the greatest sensitivity and specificity to predict FXM was 2,300 (sensitivity: 72% and specificity: 75%). For FXM prediction, DSA C1q+ Ab was the most specific (95.8%, 85–100) and the combination of DSA-MFI > 2,300 and C1q+ Ab was the most sensitive (92.0%, 79.3–100). Conclusions. C1q+ Ab and LABScreen SAB DSA-MFI were significantly associated with FXM. DSA C1q+ Ab was highly specific but with low sensitivity

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Correction to: Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study (Intensive Care Medicine, (2021), 47, 2, (160-169), 10.1007/s00134-020-06234-9)

    No full text
    The original version of this article unfortunately contained a mistake. The members of the ESICM Trials Group Collaborators were not shown in the article but only in the ESM. The full list of collaborators is shown below. The original article has been corrected
    corecore